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SYNOPSIS 

The generalized suspension viscosity equation utilized in this study was evaluated with 
both a packing fraction, (P", and a particle interaction coefficient, u, as a function of sus- 
pension blend composition, f Z T .  The estimation of the packing fraction, (P,,, in turn, required 
the further elucidation of the D5/D1  ratio of particle diameter averages. Blend constants 
developed in this study allowed evaluation of both the DJD,  ratio of particle diameter 
averages as well as the number-average particle diameter, D 1 ,  as a function of the fraction 
of one suspension in a blend, fZT. These blend constants were shown to be easily evaluated 
from each individual suspension prior to blending. The viscosity data of Johnson and 
Kelsey were shown to be generally predicted as a function of the volume composition when 
a constant particle interaction coefficient, u, was assumed. However, a better prediction of 
the results of Johnson and Kelsey was obtained by assuming that the particle interaction 
coefficient, u, was a function of the number-average particle diameter, D 1 ,  of the suspension 
mixture composition. Consequently, a new approach was identified to evaluate the simul- 
taneous effects of small particles to both increase viscosity as a result of increasing particle 
interaction as well as to decrease viscosity as a result of improving the particle-size distri- 
bution. 0 1993 John Wiley & Sons, Inc. 

INTRODUCTION 

Over the years many equations have been developed 
to predict a relationship between suspension vis- 
cosity, 7, and the volume fraction of suspended par- 
ticle, p. The applications and needs for such equa- 
tions cross many disciplines. For example, the need 
to understand the viscosity of spherical particle sus- 
pensions was recognized early in the development 
of latexes to make synthetic rubber.'-4 Paint and 
coatings latex development5s6 has also found a need 
for this technology. Other diverse suspensions that 
have utilized this technology have included the food 
industry to evaluate milk7 as well as the coal in- 
dustry to evaluate bitumen emulsions? More re- 
cently, this technology has also been applied to filled 
 thermoplastic^.^-" However, the new emerging 
thermoplastic particulate-filled thermoset resins of 
the type recently described by Recker et a1.12 would 
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probably be described as one of the types of materials 
currently most in need of a better understanding of 
the relationship between particle-size distribution 
and viscosity. 

Several recent reviews 11~13-16 have addressed the 
current understanding of particle size and particle- 
size distribution on the rheology of suspensions. In 
a recent paper by this author,17 a new generalized 
viscosity-concentration equation was described that 
combines many suspension viscosity-concentration 
equations summarized from the literature by Rut- 
g e r ~ . ' ~ * ' ~  This new generalized equation, like most 
in the literature, utilizes a maximum particle packing 
fraction, pn , in the evaluation of suspension viscos- 
ity. Several attempts have been made in the 
literature20-22 to predict the correct value for pn 
based on particle-size distribution. A new approach 
to evaluate p, for suspensions with binary particle 
combinations was recently introduced by this au- 
t h ~ r . ' ~  This analysis process will be extended in this 
study to include techniques to evaluate pn for binary 
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combinations of suspensions, each of which may 
contain a wide distribution of particles. 

APPLICATION OF MAXIMUM PACKING 
FRACTION, qn, TO A SPECIFIC 
GENERALIZED SUSPENSION VISCOSITY 
EQUATION 

A generalized suspension viscosity equation that 
describes most of the primary equations identified 
by Rutger~'~*'' was recently introduced in the lit- 
e r a t ~ r e . ' ~  This viscosity-concentration equation 
that requires a value for the packing fraction, pn, is 

f o r a #  1 (1) 

For the case where u = 1, the resulting equation can 
be written as 

1 k = -  
(Pn 

( 3 )  

where 17 is the suspension viscosity; a. , the viscosity 
of suspending medium; [ a ] ,  the intrinsic viscosity; 
IJ, the particle interaction coefficient; k , the "crowd- 
ing factor"; p, the suspension particle volume frac- 
tion; and pn, the maximum particle packing fraction. 

The intrinsic viscosity, [ a ] ,  is obtained at low 
concentration levels for the following limiting slope: 

d In 77 
as p + 0, then - + [ a ]  for all u 2 0 ( 4 )  

dP 

Some optional equations that can be developed 
using this generalized suspension viscosity equa- 
tion are summarized in Table I along with au- 
thors 1,4,24-27 who first referenced some of these 
equations. As the particle interaction coefficient, u, 
increases, the equations represented in Table I, have 
been shown to have a significantly faster rate of vis- 
cosity increase as a function of particle volume frac- 
tion. More importantly, the results in Table I show 
that fractional values of u are also perfectly accept- 
able. Likewise, it should be noted that all of these 
equations with the exception of the case for u = 0 
require the utilization of a maximum particle pack- 
ing fraction, pn. 

GENERALIZED PARTICLE PACKING 
ANALYSIS FOR SUSPENSIONS WITH 
n PARTICLE SIZES 

A simplified technique was recently propo~ed'~ to 
estimate the packing fraction, qn, for any compo- 
sition of particles in a suspension using the following 
equations: 

Table I 
Interaction Coefficient, u 

Generalized Suspension Viscosity Equation for Selected Values of the Particle 

Particle Interaction Previous Reference for 
Coefficient, u Simplified Form of Generalized Equation Equation Derivation 
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where pnult is the ultimate packing fraction; pm, the 
monodisperse packing fraction; p,,, the suspension 
packing fraction; a, a constant; and n, the number 
of different particle diameter classes in suspension, 
where the definition of the D, particle diameter av- 
erages, D,, can be described in the following general 
form: 

n 

C Nka)xk 
(7 )  

k = l  

C Nka)$-' 
Dx= n 

k = l  

where D, is the average particle-size diameter; a ) k ,  

the diameter of particle size k ;  Nk the number of k 
particles; and x ,  the exponent on a ) k  specifying the 
particle-size diameter average. 

Utilizing this calculation procedure, the value of 
pn can be evaluated for any ratio 0 5 / 0 1 .  Evaluation 
of the D5 and D1 averages requires knowledge of the 
numbers of particles, Ni , and their diameters, B i ,  
or another measure of the composition of the n dif- 
ferent particle sizes in a suspension. 

The ultimate packing fraction, pnult, obtained us- 
ing the monodisperse limit for loose random packing 
or pm = 0.589 has been shown l7 to normally be pre- 
ferred when the number of n distinctly different 
particle sizes in a suspension is greater than n = 2. 
In addition, the specific D5/D1 ratio particle diam- 
eter average was found to be the one that best pre- 
dicted the packing fraction for binary particle com- 
positions. Finally, it was suggested that the appli- 
cability of the 0 5 / 0 1  ratio should also be adequate 
to predict the packing fraction of binary combina- 
tions of two suspensions each with a broad distri- 
bution of particle sizes. This speculation will be ad- 
dressed in this paper. 

DERIVATION OF THE OPTIMUM BLEND 
FRACTION, fZT OF T W O  SUSPENSIONS A 
AND B TO ACHIEVE A MAXIMUM RATIO 

THE COMBINED BLEND 
OF PARTICLE-SIZE AVERAGES Ox/ D, FOR 

To better understand the role the D 5 / D 1  ratio of 
particle-size averages plays in the determination of 
the suspension packing fraction, pn, it is useful to 
consider the D,/D,  ratio of average particle sizes in 
general. The definition of the D, particle diameter 
averages, D,, can be described as indicated in eq. 
( 7) .  For a blend of two suspensions, the D, particle 
diameter averages can be rewritten as 

where D, is the average particle-size diameter; a1i, 
the diameter of particle size i in the first suspension; 
a),, the diameter of particle size j in the second 
suspension; N l i ,  the number of i particles in the 
first suspension; and N2j,  the number of j particles 
in the second suspension. 

For a mixture of two suspensions, then, the ratio 
of a D, average diameter to the D, average diameter 
could be written as 

m 

C N1ia);i + j = l  C N2ja);j 
i = l  

rn 

Nlia)iy1 + C N2ja);;1 
i =  1 j = l  

The process of simplifying eq. (9)  begins by consid- 
ering the volume fraction of different particles prior 
to blending. After two suspensions are blended, then 
the volume fraction of the first particle in the blend 
would be defined as 

Using volume fractions as described by eq. ( lo ) ,  the 
sum of all particle fractions in the blend would equal 
1 as 

fll + f 1 2  + f l 3  + * * * + f i n  + f 2 ,  

+ f 2 2 + f 2 3 +  . . .  + f i m = l  (11) 

or 

f l T  + f2T = 1 

where 
n 

f l T  = c f l i  
i = l  

m 

f2T = 2 f 2 j  
j = l  
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At this point, starting from eqs. ( lo) - (  14), the D,/  A2 = ( ~ 2  - ~ i ) ( d 2  - d1) 

B2 = ci(d2 - d i )  + &(c2 - ~ 1 )  
Dy ratio for the blending of two latexes described 
by eq. ( 9 ) ,  can be simplified with the blend con- 
stants, a l ,  u2, bl, b2, cl ,  c2 ,  d l ,  and d2 derived and 
summarized in Appendix A to give 

c2 = Cldl (17)  

Note at this point that the ratio D x / D y  can be ob- 
- D x = [  a i + f 2 ~ ( a 2 - u i ) ] [  b l + f 2 T ( b 2 - h ) )  ( 15) tained for any volume fraction of the second sus- 
Dy c1 + f 2 T ( C 2 - C 1 )  dl +f2T(d2-dl)  pension, f 2 T .  The maximum value of D,/D,  can be 

obtained from a plot of D, /Dy  vs. f 2 T .  It is also ap- 

calculated. The extrema for D,/Dy can be obtained 

The D x / D Y  ratio as defined by eq. ( 15) can be further parent, however, that the maximum can easily be 
simplified to give 

Dx 
Dy A2f ;T + B 2 f 2 ~  + c2 (I6) equal to zero as 

AlfgT + Blf2T + c1 by taking the derivative of eq. (16) and setting it _ -  - 

-- - 0  
df2T 

C1 = a161 The two roots of this equation are 

and 

Normally, only one of these roots gives values of f2T 

between 0 and 1. When this root is substituted into 
eq. (16) ,  the maximum value of D,/Dy is obtained. 
A simple result is obtained for f2T if each blended 
suspension is made up of only one particle size. The 
result for this case is 

1 
f 2 T  = 1 + vm 

where R21/11 is defined in Appendix A as 

3 21 
R 2 1 / 1 1  = - 

3 11 

where Bl l  and 2J21 are diameters of the first or pri- 
mary particles in each of the suspensions being 
blended. 

This result for binary combinations of particles 
sizes was also obtained in an earlier paper by this 
author.23 For binary particle blends, it is apparent 
from eq. (21) that the volume fraction where the 
D,/ Dy ratio is a maxima for ( x  = 5, y = 1 ) is also 

obtained when ( x  = 4, y = 2 ) . Further details of this 
relationship were discussed in some detail previously 
by this author23 and will not be repeated here. 

However, if the optimum volume fraction from 
eq. (21) is substituted into eq. ( 16), then the max- 
imum value of D,/Dy for binary combinations of 
particle sizes can be obtained as 

This result also agrees nicely with previously pub- 
lished results by this author.23 It is apparent from 
eq. ( 23)  that for binary combinations of particle sizes 
the same maximum value of D,/D,  is obtained only 
when the difference between x and y is identical. An 
example of one of these groups of x andy that define 
identical maxima for all values of R21/11 would in- 
clude 
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The significance of this point is that combinations 
of x and y that have the same location of the D,/Dy 
maxima will not necessarily have the same value for 

Finally, it is interesting to note that when Rzllll 
(D,/Dy )ma,. 

= 1 in eq. (21)  that 

f 2 ~  = 0.5 for all values of x 2 1 and y 2 1 (25)  

This result is intuitively satisfying since it predicts 
that the maximum ratio for D,/Dy would occur a t  
a condition of equal volume when both particles are 
the same size. 

CALCULATION PROCEDURES UTILIZED 
T O  ANALYZE THEORETICAL EQUATIONS 

The characteristic D, average particle diameters of 
either the individual suspensions of their blends 
calculated from the theoretical equations developed 
in this study require the following information: 

Profiles of particle diameters in each suspension 
or latex, Bli or BZj ,  as well as the numbers of 
these particles, Nli or N2,. 

With this information, three approaches that can 
be used to analyze the formulation developed include 
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Figure 1 Example latex A particle diameter distribution. 
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1 2 3 4 5 6 7 8 

X 
Figure 2 D, averages vs. X for example latex A. 

1. The D, average particle diameters can be cal- 
culated for each blend of two latexes or sus- 
pensions by holding the numbers of particles, 
Nl i ,  of the first latex constant but allowing 
the numbers of particles, N,, of the second 
latex to vary to obtain the volume fraction of 
the added latex, fZT, desired. With the various 
D, averages determined, it is possible to cal- 
culate the various DJD,  average ratios of in- 
terest as a function of f 2 T .  

Note: For this technique, the end point a t  
f 2 T  = 1.0 cannot be achieved. However, an 
effective end point of f z T  = 1 can be approx- 

imated utilizing an f zT  of the type f2T = 
0.999999999999999999. 

2. A desired D,/D, average particle size ratio 
can be calculated for the full range of volume 
fractions, f z T ,  by utilizing eq. ( 16). The cal- 
culations of the constants Al ,  B I ,  CI, A2, Bz, 
and Cz in eq. (16) require additional calcu- 
lations from eq. (17) in the text and eq. 
(A.8)-(A.12) and (A.22)-(A.29) in Appen- 
dix A. 

3. The suspension blend that achieves the max- 
imum value of DJD,  at a specific volume 
fraction, f2T ,  can be calculated using eq. ( 19) 
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Volume Fraction Exact Monodisperse Suspension, f2l 
Figure 3 
disperse suspensions. 

Calculated blends of a broad particle-size suspension, latex A, with exact mono- 

or (20). Again, the calculations of the con- 
stants Al , B1, Cl, A 2 ,  B2,  and C2 in eq. ( 19 ) 
or (20) require additional calculations from 
eqs. ( 1 7 )  in the text and eqs. (A.8)-(A.12) 
and (A.22)-(A.29) in Appendix A. 

Utilization of the three calculation procedures 
described above can provide a system of checks and 
balances to validate or verify the computer outputs 
for these results. All three techniques were used to 
validate the calculations presented in this study. 

BLE N DING CALCULATIONS I NVOLVl NG 
LATEX A CONSISTING OF A BROAD 
DISTRIBUTION PARTICLE DIAMETERS AND 
A MONODISPERSE LATEX CONSISTING 
OF ONLY ONE PARTICLE DIAMETER 

To illustrate the capability of the blending meth- 
odology introduced in this article, consider the ex- 
ample latex A described in Figure 1. This example 
latex has a broad distribution of particle sizes that 
can probably be best described in terms of a plot of 
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J 
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its average particle diameters, D,, described by eq. 
(7)  as discussed earlier in this article. These D, av- 
erages have been characterized by Herdan28 who 
showed that 

A plot of the D, averages vs. x for latex A are sum- 
marized in Figure 2. The question then arises as to 
which average particle diameter best characterizes 
this latex. The number-average particle diameter, 
D 1 ,  tends to weight the small particle sizes more 
than it does the large diameter particles. However, 

the actual volume of small particles is often much 
less than the large particle diameters. On the other 
hand, the D8 average particle diameter tends to 
weight the large particle diameters more than it does 
the small ones. 

In an earlier article by this author, 29 it was shown 
theoretically that the surface average particle di- 
ameter, D3,  was the correct average to use to predict 
impact in two-phase plastics. The surface average 
tends to weigh both the small particle sizes and the 
large particle sizes nearly equally to give a good 
characteristic average particle diameter of a mixture 
of particles. For this reason, the surface average, D3, 
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Figure 5 
D1 or D 4 / D 2  average particle-size ratios. 

Calculated fraction of added monodisperse suspension at the maximum D5/ 

usually is often used to characterize the average 
particle diameter in a suspension. 

Theoretical blend spectrums of particle-size dis- 
tributions as measured by the D,/Dl  particle average 
ratio for latex A with several different monodisperse 
latexes are shown in Figure 3 (assuming diameters 
of latex A measured in A) .  The monodisperse latexes 
blended with latex A to generate Figure 3 contained 
only one particle diameter size. With the monodis- 
perse latexes defined in this way, the following vol- 
ume fractions are equivalent: 

Note that not all absolute monodisperse particles 
latexes can improve latex A. The maximum ratio of 
D5/D1 for the 1000 A monodisperse latex occurs for 
the pure latex A. Any amount of the 1000 A latex 
added to latex A only tends to decrease the D 5 / D 1  
ratio. The range of monodisperse particle latexes 
that do not improve latex A are illustrated in Fig- 
ure 4. 

The monodisperse latex volume fractions, f i l  or 
f Z T ,  that locate the maximum D5/D1 ratios illus- 
trated in Figures 3 and 4 have been calculated using 
either eq. ( 19) or (20) and are summarized in Figure 
5. The results in Figure 6 illustrate the location of 
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2500 1 

Particle Diameter,Di 
Figure 6 Particle distributions for latexes B and C. 

Latex6 c mexc 

the optimum blends of latex A with the appropriate 
monodisperse latex. Also included in Figure 5 are 
the optimum blends with latex A for the 0 4 / 0 2  ratio. 
As shown theoretically, earlier, both the 0 5 / 0 1  and 
the 0 4 / 0 2  ratios gave the same location for blends 
of two exactly monodisperse latexes. However, when 
a broad particle-size suspension like latex A is 
blended with an exactly monodisperse latex, it is 
apparent that the 0 5 / 0 1  and the D4/Dz ratios do 
not give the same location of the optimum blends. 
The significance of the negative optimum values of 
fil in Figure 5 means that the maximum value of 
the 0 5 / D 1  or the 0 4 / 0 2  occurs for the original latex 
A. Any amount of monodisperse latex for these cases 
reduces the ratio of particle-size averages. Single- 
particle-size monodisperse latexes that are not ef- 

fective in improving either the 05/D1 or the D4/D2 
distribution ratios for latex A include 

Particle range for latex A giving negative fil for 

( D5/D1)rnax = 673-4158 A (28) 

Particle range for latex A giving negative fZ1 for 

(D4/D2)rnax = 1009-4506 A (29) 

BLENDING CALCULATIONS INVOLVING 
T W O  LATEXES EACH CONTAINING A 
DISTRIBUTION OF PARTICLE DIAMETERS 

To further illustrate the capability of the blending 
methodology introduced in this paper, consider the 
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Figure 7 Particle distributions of latexes D and E. 

four latex distributions illustrated in Figures 6 and 
7. The D, averages for latexes B, C, and D are sum- 
marized in Table 11. The distribution for the three 
latexes B , C ,  and D were extracted from an article 
by Johnson and K e l ~ e y . ~  These latexes each have 
multiple particles but are reasonably monodisperse. 
For comparison, the full range of blends of latex B 
with D have been included in Figure 8 for different 
D x / D 1  ratios as a function of the volume fraction of 
latex D. It is apparent in this figure that the maxi- 
mum value for D, /D1  increases with the value of x .  
However, the location of the maximum is obviously 
different for each value of x .  As discussed earlier for 
a blend of latexes each consisting of only one particle 
size, combinations of D x / D ,  with the same value of 
x + y - 7 should have the same location for (D , /  

D,),,, . For example, from eq. (21 ) , it would be an- 
ticipated that ratios 0 5 / 0 1  and D 4 / D 2  should have 
nearly the same location of the maximum values for 
these ratios when blending near monodisperse la- 
texes like B and D. The full range of blends for these 
ratios is included in Figure 9. As expected, the lo- 
cation of these maxima are indeed nearly identical. 
In particular, these values are 

and 

Although these values are not identical, they are 
extremely close. For comparison, the equivalent 
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Table I1 0, Particle Diameter Averages for Latexes B, C, and D (LB, LC, and LD) 

X 

f2T with latex A (D5/D1) 
f2T with latex A (D4/D2) 
Monodisperse diameter negative 

blend range with latex A 
(D5/D1) 

Monodisperse diameter negative 
blend range with latex A 
(DJDd 

1013.90 
1035.16 
1056.44 
1077.50 
1098.14 
1118.17 
1137.44 
1155.84 

Imaginary 
-0.0340115 

673-4158 

1009-4506 

1795.86 
1805.54 
1815.33 
1825.26 
1835.33 
1845.56 
1855.95 
1866.49 

Imaginary 
Imaginary 

3170.25 
3 175.24 
3180.17 
3 185.05 
3189.89 
3194.68 
3199.43 
3204.14 

Imaginary 
Imaginary 

1.771 
1.744 
1.718 
1.694 
1.671 
1.651 
1.632 
1.615 

1.765 
1.759 
1.752 
1.745 
1.738 
1.731 
1.724 
1.717 

3.127 
3.067 
3.010 
2.956 
2.905 
2.857 
2.813 
2.772 

RZ1jl1 ratio of absolute monodisperse latexes for the 
f zT  values above can be calculated using eq. ( 21 ) to 
give 

and 

As indicated in Table 11, the ratio of D, for latexes 
D and B that comes closest to these Rzl/l l  ratios 
would be D4 for D5/ DI and D6 for D4/ Dz . However, 
the D3 ratio satisfactorily predicts the upper limit 
of RZljl1 that could reasonably be expected for either 
D5/D1or D4/Dz. 

In addition, eq. (23) for exactly monodisperse la- 
texes predicts that 

max max max max 

max max 

(34) 

A comparison of these ratios has been included in 
Figure 10 for the range of blends for latexes B and 
D. Again, it is apparent that these maxima do not 
all have exactly the same value. However, when 

compared to the range of maxima in Figure 8, they 
do indeed have maxima that are approximately the 
same order of magnitude. 

Note that all D, averages for latexes B, C, and D 
blended with latex A fall within the range that would 
be expected to give a negative f2T for (D5/ D1 or 
( D4/D2)max ratios as indicated in eqs. (28) and (29). 
Calculations indeed show these expectations to be 
correct, as indicated in Table 11. Blends of these 
latexes with latex A gave values Of  f 2 ~ t h a t  are either 
negative or imaginary. For this reason, latex E as 
shown in Figure 7 was devised to explore the upper 
limits expected for the negative f2T range for blends 
with latex A. The results of these calculated blends 
of latex E and modifications of latex E with latex A 
are summarized in Table 111. The modifications to 
latex E were made by changing the number of par- 
ticles of the smallest particle size, N2, , or the number 
of the largest particles, NZn,  in latex E. 

The results in Table I11 indicate clearly that the 
D5 average appears to control the upper limit of f z T  
for the Ds/D1 ratio and the D4 average appears to 
control the upper limit of f2T for the D 4 / D 2  ratio. 

To explore the lower limit of f2T for D 5 / D 1  and 
D4 / D2, latex B was modified as summarized in Table 
IV. For this case, both the smallest diameter size, 
B 2 , ,  and the number of particles for the smallest 
particle size, N2, , were modified to create latexes of 
interest in this analysis. The results in Table IV 
indicate clearly that the D1 average appears to con- 
trol the lower limit of fzT for the D5/D1 ratio and 
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Volume fraction of Large Particle Size Latex, f2T 
Figure 8 Theoretical blends of latexes B and D. 

the D2 average appears to control the lower limit of 
f2* for the D 4 / D 2  ratio. 

In summary, the latex/latex blend calculations 
with multiple particles in both blended latexes 
maintain some characteristics of absolute monodis- 
perse latex blends. However, the characteristics of 
interest appear to determine which D, particle di- 
ameter average will be appropriate. 

PREDICTION OF SUSPENSION VISCOSITY 
PROPERTIES UTILIZING cp, 

The influence of particle size and polydispersity on 
the viscosity of synthetic latexes has been studied 

by Johnson and K e l ~ e y . ~  By comparing loading lev- 
els of several combinations of two relatively mono- 
disperse latexes a t  the same viscosity, they found 
that a maximum in percent solids was achieved. The 
effect of blending two latexes of different particle 
sizes to give percent solids a t  essentially the same 
1000 cps viscosity level is shown in Figure 11. This 
figure illustrates that a minimum viscosity or max- 
imum solids latex system can be obtained by suitable 
adjustment in both particle size and distribution. 

The results shown in Figure 11 can be predicted 
with equations developed in this paper. This process 
will be illustrated using a modification of eq. ( 1 ) as 
given earlier in this text. This equation can be writ- 
ten in the form 
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Volume Fraction of Large Particle Size Latex, f2T 
Figure 9 Calculated blends of latexes B and D. 

f o r a Z  1 (35) 

For the case where CT = 1, the resulting equation can 
be written as 

where q is the suspension viscosity; vo, the viscosity 
of suspending medium; [ 771, the intrinsic viscosity; 
CT, the particle interaction coefficient; (o, the suspen- 

sion particle volume fraction; and (on,  the maximum 
particle packing fraction. 

In the absence of intrinsic viscosity information 
for the data of Kelsey and Johnson, the Einstein24 
limit can be assumed such that 

1.111 = 512 (37)  

The viscosity of the solution can then be determined 
once (on is estimated from particle-size distribution. 
Utilizing constants developed in an earlier paper by 
this author for binary mixtures of particles, the 
value for (on can be obtained as 

(on = pnuit - ( pnuit - pm )ea11-(4’D1)1 ( 38 1 
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0.0 0.1 0.2 0.3 0.4 0.5  0.6 0.7 0.8 0.9 1.0 

Volume Fraction of Large Particle Size Latex, f2T 
Figure 10 Blends of latex B and latex D for different average particle-size ratios, 
D J D ( z - 2 ) .  

(Pnult = 1 - ( 1  - (39) 

where pnult is the ultimate packing fraction; pm, the 
monodisperse packing fraction ( =0.639 from Lee21) ; 
( P ~ ,  the suspension packing fraction; n, the number 
of different particle diameters sizes in the suspen- 
sion; and a, a constant (=0.268 for D5/D1 as deter- 
mined previously by this author23). 

For purposes of this discussion, the density of 
both particles and solvents in this analysis will all 
be assumed to be identical to minimize calculations 
in converting from weight to volume. If f 2 ~  is the 
volume fraction of the large particle size latex in a 
mixture of two latexes, then the D5/D1 ratio can be 

described by simplifying equations derived earlier 
in this paper as 

where Al , B1 , C1 , A2 , Bz, and Cz = latex blend con- 
stants [eqs. (17)]  calculatedusingeqs. (A.8)-(A.12) 
and (A.22) - (A.29) in Appendix A. 

If two suspensions are compared at  the same vis- 
cosity but a t  different volume fractions, f2T, they 
will have a constant viscosity ratio ( T / v o ) .  Equation 
(35) can then be solved for the general solution for 
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Table I11 0, Particle Diameter Averages for Latexes E, E M l ,  EM2, and EM3 

x 
0% 0, 0, 0% 

(Latex E) (Latex EM1) (Latex EM2) (Latex EM3) 

1 
2 
3 
4 
5 
6 
7 
8 

W D Y  

N 2 1  

N 2 "  

f Z T  with latex A 
Monodisperse diameter limit with 

latex A 

4,135.7 
4,141.4 
4,147.0 
4,152.5 
4,157.9 
4,163.3 
4,168.5 
4,173.8 

0 5 / 0 1  

1,200 
50 

0.00185616 

4,158 

4,133.5 
4,139.4 
4,145.1 
4,150.7 
4,156.2 
4,161.7 
4,167.1 
4,172.4 

0 5 / 0 1  

1,275 
50 

-0.0001 788 

4,158 

4,449.3 
4,469.3 
4,488.4 
4,506.5 
4,523.4 
4,539.3 
4,554.1 
4,567.7 

0 4 / 0 2  

1,200 
13,500 

0.00032365 

4,506 

~~ ~~ 

4,446.7 
4,466.8 
4,486.0 
4,504.1 
4,521.2 
4,537.2 
4,552.1 
4,565.9 

0 4 / 0 2  

1,200 
13,250 

-0.0009893 

4,506 

the volume concentration, ip, in terms of this con- 
stant viscosity ratio ( v/q0)  as 

f o r u #  1 (41) 

When u is an odd integer, a second possible solution 
is 

f o r u P  1 (42) 

For the case where u = 1, the resulting equation can 
be written as 

Predicted total solids results at a viscosity of 1000 
cps are shown in Figure 12 for all three binary data 
sets measured by Kelsey and Johnson using a con- 
stant particle interaction coefficient of u = 1.4. The 
monodisperse packing fraction, ipn = 0.639, used in 
this calculation was originally obtained by Lee 
from an average of five literature values for dense 
random monodisperse packing. The constant vis- 

Table IV 0, Particle Diameter Averages for Latexes BM1, BM2, BM3, and BM4 

X 
0, 0, 0, 0% 

(Latex BM1) (Latex BM2) (Latex BM3) (Latex BM4) 

1 
2 
3 
4 
5 
6 
7 
8 

W D Y  

N 2 1  

0 2 1  

f2T with latex A 
Monodisperse diameter limit 

with latex A 

654.1 
808.2 
940.9 

1,027.3 
1,078.3 
1,110.8 
1,134.9 
1,155.0 

0 5 / 0 1  

14,250 
400 

0.00046812 

656.7 
810.8 
942.6 

1,028.1 
1,078.7 
1,111.0 
1,134.9 
1,155.0 

D5/D1 

14,000 
400 

-0.0103013 

978.0 
1,007.8 
1,036.2 
1,063.0 
1,088.1 
1,111.4 
1,133.0 
1,153.0 

0 4 / 0 2  

1,400 
700 

0.00127045 

979.9 
1,009.2 
1,037.3 
1,063.8 
1,088.6 
1,111.8 
1,133.2 
1,153.1 

0 4 / 0 2  

1,325 
700 

-0.0005 149 

673 673 1,009 1,009 
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Volume Fraction of Large Particle Latex, f2T 
Figure 11 
and D. 

Viscosity data of Johnson and Kelsey at 1000 cps for blends of latexes B, C, 

cosity ratio, ?/ v0, was calculated from the viscosity 
blend data for each of the three binary latex blend 
combinations at a large particle latex volume frac- 
tion of f2T = 0.76. The general ranges and shapes of 
the curves for these calculated results were very 
similar to the measured results of Kelsey and John- 
son. More importantly, when the particle interaction 
coefficient, cr, is a constant, the solids fractions, cp, 
is a direct function of only the packing fraction, c p n .  
For this case, it can easily be shown that the max- 
imum value for cp obtained by setting the derivative 
of eq. (41) equal to zero will yield the same location 
of the maximum relative to the composition volume 

fraction, f2T ,  as the packing fraction, pn. However, 
a t  f2T = 0 and at  f2T = 1.0, the solids fractions, cp, 
are nearly identical with only a slight difference be- 
tween these end points indicative of the initial dis- 
tribution of these separate latexes. Unfortunately, 
the effects of distribution at these end points was 
opposite to that indicated by the data. 

The unexpected difference in the viscosity a t  
these end points was postulated by Kelsey and 
Johnson to be related to the contribution of the 
smaller-size particles. If the small particles are in- 
deed making a major contribution to the viscosity, 
then it would be expected that the particle inter- 
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Volume Fraction of Large Particle Latex, f2T 
Figure 12 Calculated volume fraction solids for a constant particle interaction coefficient. 

action coefficient would change with the quantity of 
small particles. 

In a previous article by this author, l7 the particle 
interaction coefficient was shown to be theoretically 
separable into a contribution predominantly from 
the interaction of particles with each other and an- 
other part associated with the interaction of particles 
with solvent. One formulation discussed for the par- 
ticle-particle interaction involved the number-av- 
erage particle diameter, D 1 ,  yielding a particle in- 
teraction coefficient, u, function of the form 

(44) 

where cpC is a constant associated with the particle- 
particle contribution to the particle interaction coef- 
ficient and cs is a constant associated with the par- 
ticle-solvent contribution to the particle interaction 
coefficient and where D1 can be obtained as a func- 
tion of f 2 T  [from a modification of the earlier eq. 
(1511 as 

where all is the diameter of the first particle in the 
first suspension and bl , b2, dl , and d2 are latex blend 
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Figure 13 
coefficient. 

Calculated volume fraction total solids for a variable particle interaction 

constants calculated using eq. (A.24), (A.25), 
(A.28), and (A.29) in Appendix A. 

When u is allowed to vary with the number-av- 
erage particle diameter, D1, as indicated in eqs. (44) 
and (45), then a significant improvement in the cal- 
culated fit of the measured data results as indicated 
in Figure 13. The constant viscosity ratio, q / q o ,  used 
for all three binary latex blend combinations was 
calculated at a volume fraction of large particles of 
f2T = 0.76 using only the viscosity data involving 
latexes B and D. With D1 calculated in angstroms 
as reported by Kelsey and Johnson, the best data 
fit of eq. (44) gave 

(46) 

These same constants for u were also used to fit the 
blends for latexes B and C as well as the blends for 
latexes C and D. In addition, the constant viscosity 
ratio, q / q o ,  was also used for the C/D and B/C 
latex blends. The actual values for u calculated using 
eq. (46) are given in Figure 14 as a function of f2T. 

Note that the values of u for these three sets of la- 
texes varied from 0.994 to 1.513. It is particularly 
interesting to note that the value of the particle in- 
teraction coefficient, u, increased with a decrease in 

773.6 
D1 

uz- + 0.750 
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0.0 0.1 0.2 0.3 0.4 0.5  0.6 0.7 0.8 0.9 1.0 

Volume Fraction Large Particle Size Latex, f2T 
Figure 14 Variable particle interaction coefficient vs. volume fraction, f Z T .  

the number-average particle size, D1 , and, conse- 
quently, an increase in the number of smaller par- 
ticles. Such an increase in the particle interaction 
coefficient would be expected to result in an increase 
in viscosity. However, at the same time, some in- 
crease in the number of small particles did improve 
the viscosity by increasing the particle-size distri- 
bution as measured by the D 5 / D 1  ratio. 

In this study, a clear separation has been made 
of the effects of small particles to both improve vis- 
cosity by improving the particle-size distribution, 
but at the same time to decrease viscosity perfor- 
mance due to increased particle interaction. How- 
ever, it is equally apparent that additional data is 

The location of the minimum viscosity or maxi- 
mum solids fraction at  constant viscosity is some- 
what different for the blend of latexes B and D as 
indicated in Figure 15 depending on whether u is 
held constant or is allowed to vary. The specific re- 
sults show that the location of the maxima for these 
two cases are 

f2T = 0.63 (when u is a constant) (47) 

and 

f2T = 0.83 (when u is allowed to be a variable) 
- . _ _  

needed to confirm this conclusion. (48) 
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Although the location of the maxima is different for 
these two cases, it is interesting that the maximum 
fraction solids, cp, for these two cases was nearly 
identical. However, when both of these two predicted 
viscosity curves are compared with the actual data 
of Johnson and Kelsey in Figure 15, it appears that 
a variable particle interaction coefficient gives the 
best fit of the data. 

Finally, while results in Figure 15 show only the 
data results a t  a viscosity of 1000 cps, the results in 
Figure 16 show the complete viscosity curves for the 
B /D latex combinations developed by Johnson and 
Kelsey. Note specifically that the subtle shifts in 
these blended latex viscosity curves can be predicted 

very satisfactorily using only calculations obtained 
from particle-size distribution. Although the viscos- 
ity curve for latex B by itself was not predicted very 
satisfactorily, it is apparent that curves for the 
blends were predicted very well. More importantly, 
note that the improved properties of the latex blends 
compared to the viscosity curves of the two original 
latexes were predicted very satisfactorily. 

CONCLUDING REMARKS 

The generalized suspension viscosity equation uti- 
lized in this study was evaluated with both a packing 
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for the blends of latexes B and D. 

Viscosity data of Johnson and Kelsey compared with theoretical predictions 

fraction, (on, and a particle interaction coefficient, 
u, as a function of suspension blend composition, 
f2T. The estimation of the packing fraction, q,,, in 
turn, required the further elucidation of the 0 5 / 0 1  

ratio of particle diameter averages. Blend constants 
developed in this study allowed evaluation of both 
the Dx/Dy  ratio of particle diameter averages as well 
as the number-average particle diameter, D1,  as a 
function of the fraction of one suspension in a blend, 
f2T. These blend constants were shown to be easily 
evaluated from each individual suspension prior to 
blending. 

The calculated variations of O,/Dy ratios were 
evaluated by mathematically blending monodisperse 

suspensions as well as by adding several monodis- 
perse suspensions to a broad particle-size suspen- 
sion. In general, results found previously for absolute 
monodisperse blends were found not to apply exactly 
to blends of moderately distributed monodisperse 
suspensions. It was also found that there was a di- 
ameter range of exact monodisperse latexes that 
could not improve the maximum D5/D1 distribution 
ratio of the broad particle-size suspension indepen- 
dent of the amount of monodisperse latex added. 

The viscosity data of Johnson and Kelsey3 were 
shown to be generally predicted as a function of the 
volume composition when a constant particle inter- 
action coefficient, CT, was assumed. However, a better 
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prediction of the results of Johnson and Kelsey was 
obtained by assuming that the particle interaction 
coefficient, u, was a function the number-average 
particle diameter, D1, of the suspension mixture 
composition. The effectiveness of the number av- 
erage in predicting u appears to be related to the 
contribution that the small particles play in deter- 
mining the contribution to the suspension viscosity. 
It was found that as the number of small particles 
increased that the value of the particle interaction 
coefficient, u, increased. Such an increase in the 
particle interaction coefficient would result in an in- 
crease in viscosity. However, a t  the same time, some 
decrease in viscosity resulted from an increase in 
the broadness of the particle-size distribution due 
to the small particle-size contribution as measured 
by the D 5 / D 1  ratio. Consequently, this study iden- 
tified a new approach to separate effects of small 
particles to both improve viscosity by improving the 
particle-size distribution but at the same time to 
decrease viscosity performance due to increased 
particle interaction. 

Unfortunately, the data of Johnson and Kelsey 
appears to be insufficient to establish a clear un- 
derstanding of the optimized balance between par- 
ticle interaction and particle-size distribution. Fu- 
ture work and additional data are needed. 

Nevertheless, the results from this study show 
how viscosity results can be predicted directly from 
an evaluation of particle-size distribution. In par- 
ticular, it has been shown that particle-size distri- 
bution can potentially be used to predict the com- 
position that will give the lowest viscosity or the 
maximum fraction solids for blends of suspensions. 

APPENDIX A: DERIVATION O F  SELECTED 
BLEND CONSTANTS FOR A BLEND OF 
T W O  LATEXES 

For a mixture of two suspensions then the ratio of a 
D, average diameter to the Dy average diameter can be 
written as 

rn 

1 i=l  j = l  J 

The process of simplifying eq. ( A . l )  begins by consider- 
ing the volume fraction of different particles prior to 

blending. For example, the volume fraction of the first 
particle, f l l  , in the first suspension before blending can be 
described as 

i= 1 

Similarly, the volume fraction of the first particle, 
f i l ,  in the second suspension before blending can be 
described as 

However, after the two suspensions are blended, then the 
volume fraction of the first particle in the blend would be 
defined as 

Using volume fractions as described by eq. (A.4), the sum 
of all particle fractions in the blend would equal 1 as 

f l l  + f 1 2  + f 1 3  + * * . + f i n  + f 2 l  

+ f 2 2  + f 2 3  + * . + f2rn = 1 (A.5)  

However, eq. (A.5)  can be rewritten as 

+ f 2 1 ( l  + Kz, + K23 + * * * + Kzm) = 1 (A.6)  

or 

where 

and 

Note that all values of Kli  and Ka and their separate 
sums in eqs. (A.6) and (A.7) are constants and indepen- 
dent of composition. This is true since all values of Nli  
and all values of N2j will always change in the same pro- 
portion when one suspension is added to another. How- 
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ever, to simplify eqs. (A.8) and (A.9) even further, it is 
important to define the following binary ratios within each 
suspension as 

Substituting eqs. (A.18) and (A.19) into eq. (A.16) gives 

fZT[ il K1i  

C K2j 
j = l  

(A.lO) 

and 1 - f2T 
i 

( A X )  At this point, utilizing eqs. (A.lO)-(A.14) and (A.20) 
allow the D,/Dy ratio in eq. ( A . l )  to be simplified as 

One additional specific binary ratio, RZll l1 ,  also needs to 
be defined as 

(A.12) a21 
R21~11 = - 

Dl1 where 

Combining eqs. (A.8) and (A.lO) gives (A.22) 
n 

al = 2 KiiR;r3 
i= 1 

- K,,R;? N1i 
N11 

_ -  (A.13) 

Combining eqs. (A.9) and ( A . l l )  gives 

n 

bl = 2 KliR?f4 
i=l  

(A.24 ) 

An additional important ratio that relates both blended 
suspensions to each other can be defined as 

(A.15) 
" 

c1 = 2 K1iR;;4 
i = l  

(A.26) 
Combining eqs. (A.7), (A.12), and (A.15) gives 

R;,3/ii (A.16) NZl 
Ni 1 

-= 

1 - f i 1  2 Kzj 

Equation (A.16) can be further simplified if it is noted 
that the total volume fraction of all particles in suspensions 
1 and 2 can be combined into single total fractions, f i ~  

and f2T9 which can be calculated as 

" 
d, = 2 KliR:f3  

i= l  
( A.28 ) 

n 

f l T  = f i l  C K1i (A.17) 
i = l  

m 

f2T = f i l  2 K2j (A.18) 
j = l  
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